Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.395
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 327-332, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710517

Objective To investigate the liver injury induced by chronic intermittent hypoxia (CIH) activation of NOD-like receptor pyrin domain containing protein 1 (NLRP1) inflammasome. Methods C57BL/6 male mice were randomly divided into control group and CIH group. Mice in CIH group were put into CIH chamber for molding (8 hours a day for 4 weeks). After 4 weeks of molding, liver tissue cells was observed by HE staining, and the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum of mice were detected by kit. The levels of reactive oxygen species (ROS) in liver tissue were detected by dihydroethidine (DHE). The expression and localization of NLRP1, apoptosis speck-like protein containing a caspase activation and recruiting domain (ASC) and caspase-1 were detected by immunohistochemical staining. The protein expressions of NLRP1, ASC, caspase-1, interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) were detected by Western blot analysis. The serum levels of IL-1ß and TNF-α were detected by ELISA. Results Compared with the control group, the CIH group exhibited significant pathological changes in hepatocytes. Hepatocytes showed signs of rupture and necrosis, accompanied by inflammatory cell aggregation. Furthermore, the levels of ALT, AST, ROS, IL-1ß and TNF-α were elevated, along with increased protein expressions of NLRP1, ASC, caspase-1, IL-1ß and TNF-α. Conclusion CIH causes liver injury by activating NLRP1 inflammasome.


Caspase 1 , Hypoxia , Inflammasomes , Interleukin-1beta , Liver , Mice, Inbred C57BL , Reactive Oxygen Species , Animals , Male , Inflammasomes/metabolism , Hypoxia/metabolism , Hypoxia/complications , Reactive Oxygen Species/metabolism , Liver/metabolism , Liver/pathology , Caspase 1/metabolism , Interleukin-1beta/metabolism , Mice , Adaptor Proteins, Signal Transducing/metabolism , Tumor Necrosis Factor-alpha/metabolism , Apoptosis Regulatory Proteins/metabolism , Alanine Transaminase/blood , CARD Signaling Adaptor Proteins/metabolism , Aspartate Aminotransferases/blood , Liver Diseases/etiology , Liver Diseases/metabolism , Liver Diseases/pathology
2.
Sleep Med Clin ; 19(2): 229-237, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692748

Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder. Its prevalence has increased due to increasing obesity and improved screening and diagnostic strategies. OSA overlaps with cardiopulmonary diseases to promote intermittent hypoxia and autonomic dysfunction. Intermittent hypoxia increases the risk for oxidative stress and inflammation, which promotes endothelial dysfunction and predisposes to atherosclerosis and other cardiovascular complications. OSA is associated with an increased sympathetic nervous system drive resulting in autonomic dysfunction leading to worsening of cardiopulmonary diseases. Cardiovascular diseases are observed in 40% to 80% of OSA patients. Therefore, it is essential to screen and treat cardiovascular diseases.


Hypoxia , Sleep Apnea Syndromes , Humans , Hypoxia/physiopathology , Hypoxia/complications , Sleep Apnea Syndromes/physiopathology , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/therapy , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/complications , Autonomic Nervous System/physiopathology , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/therapy
3.
Exp Cell Res ; 438(2): 114061, 2024 May 15.
Article En | MEDLINE | ID: mdl-38692345

Acute myocardial infarction (AMI) is a prevalent cardiovascular disease with high morbidity and mortality rates worldwide. Pyroptosis is an inflammatory form of programmed cell death that has been linked to various pathological conditions. However, its exact contribution to the onset and progression of heart injury in AMI has not yet fully elucidated. Herein, we established mouse AMI model by ligating the left anterior descending artery and performed transcriptome analysis during the early phase of AMI. Mouse HL-1 and human AC-16 cardiomyocytes were subjected to hypoxia to simulate ischemic injury in vitro. Our results revealed a significant activation of the inflammatory response at 3 h post-ligation, as confirmed by RNA sequencing. We identified the occurrence of NLRP3 inflammasome-mediated pyroptosis in the cardiac tissues of human cases with AMI, as well as in mouse models of AMI and hypoxia-induced cardiomyocytes, using immunohistochemistry staining and Western blotting assays. Concurrently, pharmacological inhibition of NLRP3 inflammasome-mediated pyroptosis with MCC950 and VX-765 effectively decreased hypoxia-induced cardiomyocytes injury, while mitigating myocardial oxidative stress, apoptosis and inflammation caused by hypoxia. Moreover, the circulating levels of gasdermin D (GSDMD), the pyroptosis executor, were remarkably elevated in the plasma of mice with early AMI and in the supernatant of hypoxia-exposed cardiomyocytes in a time-dependent manner using ELISA and Western blotting. Furthermore, the change in circulating GSDMD positively correlated with Creatine Kinase-MB (CK-MB) in the plasma of early-stage AMI mouse. In summary, these findings indicated a critical role for NLRP3 inflammasome-mediated pyroptosis in the progression of AMI, the administration of MCC950 and VX-765 may be attractive candidate therapeutic approaches for cardiac injury caused by acute hypoxia or even AMI. Additionally, the circulating GSDMD exhibits potential as a newly diagnostic biomarker for AMI.


Apoptosis , Furans , Inflammation , Mice, Inbred C57BL , Myocardial Infarction , Myocytes, Cardiac , Oxidative Stress , Pyroptosis , Sulfonamides , Pyroptosis/drug effects , Animals , Mice , Apoptosis/drug effects , Oxidative Stress/drug effects , Sulfonamides/pharmacology , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/drug therapy , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Male , Furans/pharmacology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/drug therapy , Indenes/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , para-Aminobenzoates/pharmacology , Inflammasomes/metabolism , Inflammasomes/drug effects , Disease Models, Animal , Myocardium/metabolism , Myocardium/pathology , Hypoxia/metabolism , Hypoxia/complications , Dipeptides
4.
Front Immunol ; 15: 1374236, 2024.
Article En | MEDLINE | ID: mdl-38605948

Despite undeniable advances in modern medicine, lung cancer still has high morbidity and mortality rates. Lung cancer is preventable and treatable, and it is important to identify new risk factors for lung cancer, especially those that can be treated or reversed. Obstructive sleep apnea (OSA) is a very common sleep-breathing disorder that is grossly underestimated in clinical practice. It can cause, exacerbate, and worsen adverse outcomes, including death and various diseases, but its relationship with lung cancer is unclear. A possible causal relationship between OSA and the onset and progression of lung cancer has been established biologically. The pathophysiological processes associated with OSA, such as sleep fragmentation, intermittent hypoxia, and increased sympathetic nervous excitation, may affect normal neuroendocrine regulation, impair immune function (especially innate and cellular immunity), and ultimately contribute to the occurrence of lung cancer, accelerate progression, and induce treatment resistance. OSA may be a contributor to but a preventable cause of the progression of lung cancer. However, whether this effect exists independently of other risk factors is unclear. Therefore, by reviewing the literature on the epidemiology, pathogenesis, and treatment of lung cancer and OSA, we hope to understand the relationships between the two and promote the interdisciplinary exchange of ideas between basic medicine, clinical medicine, respiratory medicine, sleep medicine, and oncology.


Lung Neoplasms , Sleep Apnea, Obstructive , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Lung Neoplasms/therapy , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/epidemiology , Sleep Apnea, Obstructive/therapy , Risk Factors , Sympathetic Nervous System , Hypoxia/complications
5.
Medicine (Baltimore) ; 103(16): e37891, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640271

RATIONALE: Traumatic bronchial rupture in infants usually necessitates surgical intervention, with few reports documenting instances of multiple cardiac arrests occurring during surgery under conditions of severe hypoxemia. PATIENT CONCERNS: A 3-year-old boy after trauma presented with severe hypoxemia for 2 days and was urgently transferred to the operating room for surgery, 6 episodes of cardiac arrest happend during surgery. DIAGNOSES: The baby was diagnosed with bronchial rupture based on the history of trauma, clinica manifestations, and intraoperative findings. INTERVENTIONS: Intrathoracic cardiac compression and intravenous adrenaline were administrated. OUTCOMES: The normal sinus rhythm of the heart was successfully restored within 1 minute on each occasion, facilitating the smooth completion of the surgical procedure. By the end of surgery, SpO2 levels had rebounded to 95% and remained stable. LESSONS: Inadequate management of bronchial ruptures in infants frequently coincides with severe hypoxemia, necessitating immediate surgical intervention. Prompt identification and management of cardiac arrest by anesthetists during surgery is imperative to reduce mortality.


Epinephrine , Heart Arrest , Male , Infant , Humans , Child, Preschool , Heart Arrest/etiology , Rupture/surgery , Rupture/complications , Hypoxia/complications , Operating Rooms
6.
BMC Anesthesiol ; 24(1): 148, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637753

BACKGROUND: Anesthesia for spinal muscular atrophy (SMA) patients undergoing spinal deformity surgery is challenging. We report an unusual case of an SMA girl who developed severe intraoperative hypoxemia and hypotension during posterior spinal fusion related with surgical positioning. CASE PRESENTATION: A 13-yr-old girl diagnosed with SMA type 2, severe kyphoscoliosis and thoracic deformity was scheduled for elective posterior spinal fusion. She developed severe hypoxemia and profound hypotension intraoperatively in the prone position with surgical table tilted 45° to the right. Though transesophageal echocardiography (TEE) could not be performed due to limited mouth opening, her preoperative computed tomography revealed a severely distorted thoracic cavity with much reduced volume of the right side. A reasonable explanation was when the surgeons performed surgical procedure with the tilted surgical table, the pressure was directly put on the shortest diameter of the significantly deformed thoracic cavity, causing severe compression of the pulmonary artery, resulting in both hypoxemia and hypotension. The patient stabilized when the surgical table was tilted back and successfully went through the surgery in the leveled prone position. CONCLUSIONS: Spinal fusion surgery is beneficial for SMA patients in preventing scoliosis progression and improving ventilation. However, severe scoliosis and thoracic deformities put them at risk of both hemodynamic and respiratory instability during surgical positioning. When advanced monitoring like TEE is not practical intraoperatively, preoperative imaging may help with differential diagnosis, and guide the surgical positioning to minimize mechanical compression of the thoracic cavity, thereby helping the patient complete the surgery safely.


Hypotension , Muscular Atrophy, Spinal , Scoliosis , Spinal Fusion , Female , Humans , Hypotension/etiology , Hypoxia/complications , Muscular Atrophy, Spinal/complications , Retrospective Studies , Scoliosis/surgery , Spinal Fusion/adverse effects , Spinal Fusion/methods , Treatment Outcome , Adolescent
7.
Sci Rep ; 14(1): 8670, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622371

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Mice , Humans , Animals , Hypertension, Pulmonary/drug therapy , Osteopontin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Pulmonary Artery/metabolism , Hypoxia/complications , Hypoxia/genetics , Hypoxia/metabolism , Pulmonary Arterial Hypertension/metabolism , RNA, Small Interfering/metabolism , Autophagy/genetics , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Vascular Remodeling
8.
Eur Radiol Exp ; 8(1): 50, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38570418

BACKGROUND: Heartbeat-based cross-sectional area (CSA) changes in the right main pulmonary artery (MPA), which reflects its distensibility associated with pulmonary hypertension, can be measured using dynamic ventilation computed tomography (DVCT) in patients with and without chronic obstructive pulmonary disease (COPD) during respiratory dynamics. We investigated the relationship between MPA distensibility (MPAD) and respiratory function and how heartbeat-based CSA is related to spirometry, mean lung density (MLD), and patient characteristics. METHODS: We retrospectively analyzed DVCT performed preoperatively in 37 patients (20 female and 17 males) with lung cancer aged 70.6 ± 7.9 years (mean ± standard deviation), 18 with COPD and 19 without. MPA-CSA was separated into respiratory and heartbeat waves by discrete Fourier transformation. For the cardiac pulse-derived waves, CSA change (CSAC) and CSA change ratio (CSACR) were calculated separately during inhalation and exhalation. Spearman rank correlation was computed. RESULT: In the group without COPD as well as all cases, CSACR exhalation was inversely correlated with percent residual lung volume (%RV) and RV/total lung capacity (r = -0.68, p = 0.003 and r = -0.58, p = 0.014). In contrast, in the group with COPD, CSAC inhalation was correlated with MLDmax and MLD change rate (MLDmax/MLDmin) (r = 0.54, p = 0.020 and r = 0.64, p = 0.004) as well as CSAC exhalation and CSACR exhalation. CONCLUSION: In patients with insufficient exhalation, right MPAD during exhalation was decreased. Also, in COPD patients with insufficient exhalation, right MPAD was reduced during inhalation as well as exhalation, which implied that exhalation impairment is a contributing factor to pulmonary hypertension complicated with COPD. RELEVANCE STATEMENT: Assessment of MPAD in different respiratory phases on DVCT has the potential to be utilized as a non-invasive assessment for pulmonary hypertension due to lung disease and/or hypoxia and elucidation of its pathogenesis. KEY POINTS: • There are no previous studies analyzing all respiratory phases of right main pulmonary artery distensibility (MPAD). • Patients with exhalation impairment decreased their right MPAD. • Analysis of MPAD on dynamic ventilation computed tomography contributes to understanding the pathogenesis of pulmonary hypertension due to lung disease and/or hypoxia in patients with expiratory impairment.


Hypertension, Pulmonary , Lung Diseases , Pulmonary Disease, Chronic Obstructive , Male , Humans , Female , Pulmonary Artery/diagnostic imaging , Hypertension, Pulmonary/diagnostic imaging , Hypertension, Pulmonary/complications , Retrospective Studies , Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/complications , Tomography, X-Ray Computed/methods , Hypoxia/complications
9.
J Cardiothorac Surg ; 19(1): 172, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570837

OBJECTIVE: To review and analyze the airway and anesthesia management methods for patients who underwent endoscopic closure of tracheoesophageal fistula (TEF) and to summarize the experience of intraoperative airway management. METHOD: We searched the anesthesia information system of the First Affiliated Hospital of Nanjing Medical University for anesthesia cases of TEF from July 2020 to July 2023 and obtained a total of 34 anesthesia records for endoscopic TEF occlusion. The intraoperative airway management methods and vital signs were recorded, and the patients' disease course and follow-up records were analyzed and summarized. RESULTS: The airway management strategies used for TEF occlusion patients included nasal catheter oxygen (NCO, n = 5), high-flow nasal cannula oxygen therapy (HFNC, n = 4) and tracheal intubation (TI, n = 25). The patients who underwent tracheal intubation with an inner diameter of 5.5 mm had stable hemodynamics and oxygenation status during surgery, while intravenous anesthesia without intubation could not effectively inhibit the stress response caused by occluder implantation, which could easily cause hemodynamic fluctuations, hypoxemia, and carbon dioxide accumulation. Compared with those in the TI group, the NCO group and the HFNC group had significantly longer surgical times, and the satisfaction score of the endoscopists was significantly lower. In addition, two patients in the NCO group experienced postoperative hypoxemia. CONCLUSION: During the anesthesia process for TEF occlusions, a tracheal catheter with an inner diameter of 5.5 mm can provide a safe and effective airway management method.


Anesthesia , Tracheoesophageal Fistula , Humans , Tracheoesophageal Fistula/surgery , Tracheoesophageal Fistula/etiology , Retrospective Studies , Intubation, Intratracheal/adverse effects , Oxygen , Hypoxia/complications , Anesthesia/adverse effects
10.
Sci Rep ; 14(1): 7924, 2024 04 04.
Article En | MEDLINE | ID: mdl-38575644

Neonatal hypoxic-ischemic brain injury (HIBI) results in part from excess reactive oxygen species and iron-dependent lipid peroxidation (i.e. ferroptosis). The vitamin D precursor 7-dehydrocholesterol (7-DHC) may inhibit iron-dependent lipid peroxidation. Primary neurons underwent oxygen and glucose deprivation (OGD) injury and treatment with 7-DHC-elevating medications such as cariprazine (CAR) or vehicle. Postnatal day 9 mice underwent sham surgery or carotid artery ligation and hypoxia and received intraperitoneal CAR. In neurons, CAR administration resulted in significantly increased cell survival compared to vehicle controls, whether administered 48 h prior to or 30 min after OGD, and was associated with increased 7-DHC. In the mouse model, malondialdehyde and infarct area significantly increased after HIBI in the vehicle group, which were attenuated by post-treatment with CAR and were negatively correlated with tissue 7-DHC concentrations. Elevating 7-DHC concentrations with CAR was associated with improved cellular and tissue viability after hypoxic-ischemic injury, suggesting a novel therapeutic avenue.


Dehydrocholesterols , Ferroptosis , Hypoxia-Ischemia, Brain , Animals , Mice , Animals, Newborn , Brain , Hypoxia/complications , Oxygen/therapeutic use , Ischemia/complications , Iron/therapeutic use
11.
Med Sci Monit ; 30: e943443, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678319

BACKGROUND Necrotizing enterocolitis (NEC) is a potentially life-threatening disease that affects the intestine of the neonate, causing necrosis and general inflammation. Treatment consists of feeding cessation and antibiotic therapy. In more severe cases, surgical intervention is necessary. Recently, different NEC models have been used to study the development of novel diagnostic and therapeutic methods. This work modified an experimental NEC model in rat pups by a single exposure of animals to NEC-causing factors and testing the impact of mother's milk on prevalence of the disease. MATERIAL AND METHODS Fifty rat pups were subjected to the NEC protocol, in which they were exposed to 100% nitrogen atmosphere and cold stress for set periods of time and formula feeding with exposure to mother's milk and artificial milk. Twenty-nine pups were used for control. After a set time of 72 h, bowel fragments were obtained and examined histologically by hematoxylin-eosin staining with a modified 3-grade scale. RESULTS Histological features of NEC were present in most of the samples (10/14) in the group exposed to 1 min of hypoxia (P=0.016), 10 min of cold stress (P=0.4) and formula feeding every 3 h with no mother's milk (P=0.001). In the group of 11 animals with the same stress conditions but fed mother's milk right after birth, only 1 sample of NEC was present. CONCLUSIONS The modified experimental NEC model based on formula feeding and single exposure to hypothermia and hypoxia was assessed statistically and histologically. In this model, mother's milk had a protective effect against necrotizing enterocolitis.


Animals, Newborn , Disease Models, Animal , Enterocolitis, Necrotizing , Hypoxia , Milk , Animals , Enterocolitis, Necrotizing/pathology , Rats , Hypoxia/complications , Milk/metabolism , Hypothermia , Female , Incidence , Rats, Sprague-Dawley
12.
J Am Heart Assoc ; 13(6): e031867, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38497483

BACKGROUND: Circular RNAs can serve as regulators influencing the development of pulmonary hypertension (PH). However, their function in pulmonary vascular intimal injury remains undefined. Thus, we aimed to identify specifically expressed circular RNAs in pulmonary microvascular endothelial cells (PMECs) under hypoxia and PH. METHODS AND RESULTS: Deep RNA sequencing and quantitative real-time polymerase chain reaction revealed that circALMS1 (circular RNA Alstrom syndrome protein 1) was reduced in human PMECs under hypoxia (P<0.0001). Molecular biology and histopathology experiments were used to elucidate the roles of circALMS1 in regulating PMEC dysfunction among patients with PH. The circALMS1 expression was decreased in the plasma of patients with PH (P=0.0315). Patients with lower circALMS1 levels had higher risk of death (P=0.0006). Moreover, the circALMS1 overexpression of adeno-associated viruses improved right ventricular function and reduced pulmonary vascular remodeling in monocrotaline-PH and sugen/hypoxia-PH rats (P<0.05). Furthermore, circALMS1 overexpression promoted apoptosis and inhibited PMEC proliferation and migration under hypoxia by directly downregulating miR-17-3p (P<0.05). Dual luciferase assay confirmed the direct binding of circALMS1 to miR-17-3p and miR-17-3p binding to its target gene YT521-B homology domain-containing family protein 2 (YTHDF2) (P<0.05). The YTHDF2 levels were also downregulated in hypoxic PMECs (P<0.01). The small interfering RNA YTHDF2 reversed the effects of miR-17-3p inhibitors on PMEC proliferation, migration, and apoptosis. Finally, the results indicated that, although YTHDF2, as an N(6)-methyladenosine reader protein, contributes to the degradation of many circular RNAs, it could not regulate the circALMS1 levels in PMECs (P=0.9721). CONCLUSIONS: Our study sheds new light on circALMS1-regulated dysfunction of PMECs by the miR-17-3p/YTHDF2 pathway under hypoxia and provides insights into the underlying pathogenesis of PH.


Hypertension, Pulmonary , MicroRNAs , Humans , Rats , Animals , Hypertension, Pulmonary/metabolism , MicroRNAs/metabolism , Endothelial Cells/metabolism , RNA, Circular/genetics , Pulmonary Artery , Hypoxia/complications , Cell Proliferation/physiology
13.
Clin Exp Hypertens ; 46(1): 2332695, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38527024

BACKGROUND: Endothelial dysfunction of the pulmonary artery contributes to hypoxia-induced pulmonary arterial hypertension (PAH). Omentin-1, as a novel adipocytokine, plays an important protective role against cardiovascular diseases. However, the effect and underlying mechanisms of omentin-1 against PAH remain unclear. METHODS: PAH was induced in SD (Sprague & Dawley) rats via a low-oxygen chamber for 4 weeks. Hemodynamic evaluation was undertaken using a PowerLab data acquisition system, and histopathological analysis was stained with hematoxylin and eosin (H&E). Endothelial function of pulmonary artery was assessed using wire myography. RESULTS: We found that omentin-1 significantly improved pulmonary endothelial function in rats exposed to hypoxia and attenuated PAH. Mechanistically, we found that omentin-1 increased phosphorylated 5'­adenosine monophosphate­activated protein kinase (p­AMPK) level and reduced endoplasmic reticulum (ER) stress and increased NO production in pulmonary artery from rats exposed to hypoxia. However, the effect of omentin-1 was abolished by treatment with AMPK inhibitor (Compound C). CONCLUSIONS: Our results reveal a protective effect of omentin-1 in PAH via inhibiting ER stress through AMPKα signaling and provide an agent with translational potential for the treatment of PAH.


AMP-Activated Protein Kinases , Pulmonary Arterial Hypertension , Rats , Animals , AMP-Activated Protein Kinases/metabolism , Pulmonary Arterial Hypertension/metabolism , Signal Transduction , Pulmonary Artery , Rats, Sprague-Dawley , Hypoxia/complications , Hypoxia/metabolism , Endoplasmic Reticulum Stress
14.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article En | MEDLINE | ID: mdl-38542217

Obstructive sleep apnoea (OSA) and components of metabolic syndrome (MetS) are inextricably connected. Considering the increasing burden of MetS and OSA, in the present review, we aimed to collate and summarise the potential pathophysiological mechanisms linking these pathologies. In short, obesity appears to promote OSA development via multiple pathways, some of which are not directly related to mass but rather to metabolic complications of obesity. Simultaneously, OSA promotes weight gain through central mechanisms. On the other hand, diabetes mellitus contributes to OSA pathophysiology mainly through effects on peripheral nerves and carotid body desensitization, while intermittent hypoxia and sleep fragmentation are the principal culprits in OSA-mediated diabetes. Apart from a bidirectional pathophysiological relationship, obesity and diabetes mellitus together additively increase cardiovascular risk in OSA patients. Additionally, the emergence of new drugs targeting obesity and unequivocal results of the available studies underscore the need for further exploration of the mechanisms linking MetS and OSA, all with the aim of improving outcomes in these patients.


Diabetes Mellitus , Metabolic Syndrome , Sleep Apnea, Obstructive , Humans , Metabolic Syndrome/metabolism , Obesity/metabolism , Hypoxia/complications
15.
J Int Med Res ; 52(3): 3000605241233516, 2024 Mar.
Article En | MEDLINE | ID: mdl-38497129

Drowning is a common cause of childhood morbidity and mortality worldwide. Anoxia, hypothermia, and metabolic acidosis are mainly responsible for this morbidity. Drowning may lead to multiple organ damage, especially cardiac damage, in cases in which severe hypothermia and hypoxemia occur. We report a case of a 4-year-old girl who was admitted to our hospital's Emergency Department because of drowning. She had elevated troponin I concentrations and ST-segment elevation with T wave inversion. However, cardiovascular computed tomography showed no obvious abnormalities in the coronary arteries. We suggest that cardiac damage in this situation is caused by coronary artery spasms. To the best of our knowledge, this is the first case of cardiac damage with electrocardiographic changes after drowning in a preschool child.


Drowning , Hypothermia , Myocardial Infarction , Near Drowning , Female , Humans , Child, Preschool , Near Drowning/complications , Hypothermia/complications , Electrocardiography/methods , Myocardial Infarction/etiology , Hypoxia/complications , Arrhythmias, Cardiac
16.
Am J Physiol Heart Circ Physiol ; 326(5): H1094-H1104, 2024 May 01.
Article En | MEDLINE | ID: mdl-38426864

Obstructive sleep apnea (OSA) is associated with the progression of cardiovascular diseases, arrhythmias, and sudden cardiac death (SCD). However, the acute impacts of OSA and its consequences on heart function are not yet fully elucidated. We hypothesized that desaturation events acutely destabilize ventricular repolarization, and the presence of accompanying arousals magnifies this destabilization. Ventricular repolarization lability measures, comprising heart rate corrected QT (QTc), short-time-variability of QT (STVQT), and QT variability index (QTVI), were calculated before, during, and after 20,955 desaturations from lead II electrocardiography signals of 492 patients with suspected OSA (52% men). Variations in repolarization parameters were assessed during and after desaturations, both with and without accompanying arousals, and groupwise comparisons were performed based on desaturation duration and depth. Regression analyses were used to investigate the influence of confounding factors, comorbidities, and medications. The standard deviation (SD) of QT, mean QTc, SDQTc, and STVQT increased significantly (P < 0.01), whereas QTVI decreased (P < 0.01) during and after desaturations. The changes in SDQT, mean QTc, SDQTc, and QTVI were significantly amplified (P < 0.01) in the presence of accompanying arousals. Desaturation depth was an independent predictor of increased SDQTc (ß = 0.405, P < 0.01), STVQT (ß = 0.151, P < 0.01), and QTVI (ß = 0.009, P < 0.01) during desaturation. Desaturations cause acute changes in ventricular repolarization, with deeper desaturations and accompanying arousals independently contributing to increased ventricular repolarization lability. This may partially explain the increased risk of arrhythmias and SCD in patients with OSA, especially when the OSA phenotype includes high hypoxic load and fragmented sleep.NEW & NOTEWORTHY Nocturnal desaturations are associated with increased ventricular repolarization lability. Deeper desaturations with accompanying arousals increase the magnitude of alterations, independent of confounding factors, comorbidities, and medications. Changes associated with desaturations can partially explain the increased risk of arrhythmias and sudden cardiac death in patients with OSA, especially in patients with high hypoxic load and fragmented sleep. This highlights the importance of detailed electrocardiogram analytics for patients with OSA.


Arrhythmias, Cardiac , Sleep Apnea, Obstructive , Male , Humans , Female , Death, Sudden, Cardiac/etiology , Sleep Apnea, Obstructive/complications , Arousal , Electrocardiography/adverse effects , Heart Rate/physiology , Hypoxia/complications
17.
Dent Med Probl ; 61(2): 165-167, 2024.
Article En | MEDLINE | ID: mdl-38488764

This commentary on sleep medicine explores whether the potential relationship between sleep bruxism (SB), masticatory muscle pain (MMP) and sleep breathing disorders (SBDs)contributes to improving the management of co-occurring conditions.The paper is divided into 2 sections: (1) reviewing the debate on SB nosology; and (2) based on the publications from the Martynowicz & Wieckiewicz research group, exploringthe role of intermittent hypoxia as a putative mechanism endotype that may link such co-occurrence among individuals for whom characteristics are not yet clear.


Sleep Bruxism , Humans , Sleep Bruxism/complications , Masticatory Muscles/physiology , Sleep/physiology , Pain , Hypoxia/complications
18.
Int Heart J ; 65(2): 318-328, 2024.
Article En | MEDLINE | ID: mdl-38556339

This study investigated the effects of hydroxycitric acid tripotassium hydrate on right ventricular function, myocardial and pulmonary vascular remodeling in rats with pulmonary hypertension, and possible mechanisms. METHODS: Pulmonary hypertension was induced in male Sprague-Dawley rats by a single subcutaneous injection of monocrotaline or hypoxic chamber. In vivo, inflammatory cytokine (including TNF-α, IL-1ß, IL-6, and TGF-ß, the level of SOD) expression, superoxide dismutase and hydrogen peroxide levels, and p-IκBα and p65 expressions were detected. In vitro, pulmonary artery smooth muscle cell proliferation and migration, ROS production, and hypoxia-inducible factor-1 expression were also studied. RESULTS: Hydroxycitric acid tripotassium hydrate decreased right ventricular systolic pressure and reduced right ventricular fibrosis and pulmonary vascular remodeling in rats with two kinds of pulmonary hypertension. Moreover, the expression of both inflammatory and oxidative stress factors was effectively reduced, and the p65 signaling pathway was found to be inhibited in this study. Additionally, hydroxycitric acid tripotassium hydrate inhibited human pulmonary artery smooth cell proliferation and migration in vitro. CONCLUSIONS: This study shows that hydroxycitric acid tripotassium hydrate can alleviate pulmonary hypertension caused by hypoxia and monocycloline in rats, improve remodeling of the right ventricle and pulmonary artery, and inhibit pulmonary artery smooth muscle cell proliferation and migration. The protective effects may be achieved by regulating inflammation and oxidative stress through the p65 signaling pathway.


Citrates , Hypertension, Pulmonary , Rats , Animals , Male , Humans , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/chemically induced , Monocrotaline/adverse effects , Rats, Sprague-Dawley , Vascular Remodeling , Hypoxia/complications , Hypoxia/drug therapy , Hypoxia/metabolism , Pulmonary Artery , Myocytes, Smooth Muscle/metabolism , Cell Proliferation , Disease Models, Animal
19.
Can Respir J ; 2024: 6038771, 2024.
Article En | MEDLINE | ID: mdl-38505803

Introduction: Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) contributes to a poor prognosis. Reliable biomarkers to predict adverse outcomes during hospitalization are important. Aim: To investigate the relationship between the serum cholinesterase (ChE) level and adverse clinical outcomes, including hypoxemia severity, hypercapnia, duration of hospital stay (DoHS), and noninvasive ventilation (NIV) requirement, in patients with AECOPD. Methods: Patients hospitalized with AECOPD in the Wuhu Hospital of Traditional Chinese Medicine between January 2017 and December 2021 were included. Results: A total of 429 patients were enrolled. The serum ChE level was significantly lower in patients with hypercapnia, who required NIV during hospitalization and who had a DoHS of >10 days, with an oxygenation index < 300. The ChE level was correlated negatively with the C-reactive protein level and neutrophil-to-lymphocyte ratio and correlated positively with the serum albumin level. Multivariate logistic regression analysis indicated that a serum ChE level of ≤4116 U/L (OR = 2.857, 95% CI = 1.46-5.58, p = 0.002) was associated significantly with NIV requirement. Conclusions: The serum ChE level was correlated significantly with complicating severe hypoxemia, hypercapnia, prolonged DoHS, and the need for NIV in patients hospitalized with AECOPD. The serum ChE level is a clinically important risk-stratification biomarker in patients hospitalized with AECOPD.


Hypercapnia , Pulmonary Disease, Chronic Obstructive , Humans , Prognosis , Hypercapnia/complications , Cholinesterases , Pulmonary Disease, Chronic Obstructive/complications , Hypoxia/complications , Disease Progression , Retrospective Studies
20.
Chest ; 165(3): e71-e74, 2024 Mar.
Article En | MEDLINE | ID: mdl-38461021

CASE PRESENTATION: An 8-year-old girl presented with a 34-day history of cough, fatigue, and impaired exercise tolerance. She experienced cyanosis on exertion but denied fever, hemoptysis, hematuria, or seizures. Her perinatal and family histories were unremarkable, and she had no history of exposure to TB. A chest radiogram from a local clinic showed diffuse pulmonary lesions. Tuberculin skin test, interferon-γ release assay, and HIV antibody test results were all negative. Immunoglobulin levels and lymphocyte subsets were normal. The patient did not respond to IV azithromycin for 1 week for community-acquired pneumonia. She was transferred to our hospital because of progressive respiratory distress and hypoxemia.


Azithromycin , Cough , Humans , Female , Child , Cough/etiology , Hemoptysis , Dyspnea , Hypoxia/complications
...